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We examine global dynamics and bifurcations occurring in a truncated model of a stellar mean-field dy-
namo. This model has symmetry-forced invariant subspaces for the dynamics and we find examples of tran-
sient type | intermittency and blowout bifurcations to transient on-off intermittency, involving laminar phases
in the invariant submanifold. In particular, our model provides examples of blowout bifurcations that occur on
varying a non-normal parameter; that is, the parameter varies the dynamics within the invariant subspace at the
same time as the dynamics normal to it. As a consequence of this we find that the Lyapunov exponents do not
vary smoothly and the blowout bifurcation occurs over a range of parameter values rather than a point in the
parameter spacgS1063-651X97)00312-1

PACS numbd(s): 05.45+b

I. INTRODUCTION (H2) The attractor that becomes transversely unstable in
the M, and hence causes the blowout bifurcation is usually
There has recently been a great deal of work on determirassumed to be chaotic.
istic dynamical systems possessing invariant submanifold§Note, however, that Yalcinkaya and LEf] find blowout
motivated by symmetric systems, and in particular someype bifurcations from quasiperiodic dynamics ofi)
coupled systems. Such systems have been shown to be ca-As many physical systems of interest are unlikely to pos-
pable of producing a range of interesting and robust dynamisess normal parameteta notable exception to this being
cal modes of behavior, such eddled basingd1] andon-off  some coupled systemswe expect thatH1) is not usually
intermittency[ 2], shown to be related by thdowout bifur-  applicable. This is particularly expected to be true in trunca-
cation [3], as well astransient on-off intermittencf4]. We  tions of partial differential equations that arise in fluid and
denote the manifold on which such a system is defineby dynamo equationgas well as astrophysical models in gen-
and the corresponding invariant submanifoldMy. An at-  eral. Thus, by studying the behavior of a specific example
tractor is said to have a riddled basin if every open set interwhere(H1) does not hold, we hope to throw some light on
secting the basin also intersects the basin of another attracttve dynamics of general systems of this type.
in a set of positive measure; such basins can arise robustly To this end we examine a system whékl) does not
for Milnor attractors[5] contained inM; . hold, i.e., where the control parameter varies the dynamics
On-off intermittency to a state iM, is characterized by within the invariant subspace as well as that normal to it. We
dynamics that comes arbitrarily close to the statMinbut ~ see that this has the effect of “spreading” the blowout bi-
that also has intermittent large deviations frdy. Tran-  furcation out over an interval of parameter values due to the
sient on-off intermittency is a transient dynamics exhibitingexistence of periodic windows whef#i2) does not hold,;
characteristics of on-off intermittent behavior. Namely, it hashowever, we conjecture that there is a positive measure sub-
an average distribution of laminar phases that satisfies set of parameters on which the blowout resembles the case
power law with exponent-3/2 [4]. All these phenomena for normal parameters.
arise as different aspects of blowout bifurcations, where a The model we describe in Sec. Il arises as the truncation
maximum normal Lyapunov exponent of an attractoMp  of a stellar axisymmetric mean field dynamo model where
passes through zero and thus causes a loss of stability. The natural control parameters are not normal. There is also
date, most mathematical understanding of such systems more than one invariant manifold forced by the spatial sym-
limited to cases where there are a number of simplifyingmetries of the system, although this does not appear to affect
assumptions: the behavior in the cases examined, in the sense that it is
(H1) The control parameters are assumed tadenal[6]  only one of these manifolds, namely the antisymmetric one,
in the sense that the dynamics of the invariant submanifold isvhich seems to dominate the attracting dynamics.
independent of the bifurcation parameter. Such parameters In Sec. Il we discuss numerical results from simulations
preserve the dynamics on the invariant submanifold, but alef the model; we discuss the basic bifurcational behavior in
low it to vary in the rest of the phase space. the full system and the antisymmetric subspace before dis-
cussing examples of type | intermittency, transient on-off
intermittency and non-normal parameter blowout bifurcation

*Electronic address: E.O.Covas@gmw.ac.uk in the model. In Sec. IV the implications of the results are
"Electronic address: P.Ashwin@mcs.surrey.ac.uk discussed for more general systems of this type as well as for
*Electronic address: reza@maths.qmw.ac.uk the dynamo problem.
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Il. MODEL whereN determines the truncation order, reduces Egs-

(4) to a set of ordinary differential equations, the dimension

of which depends on the truncation ordérWe consider the
The dynamo model considered here is the so-cadl®d  fyll system given in terms of the variables,, B,, C,,

mean-field dynamo model, with a dynamieffect, givenby n=1_.. N in the form

Schmalz and Stix8] (see also Covast al. [9] for details.

We assume a spherical axisymmetrical configuration with dA, ) D

one spatial dimensior (corresponding to the latitude and Jt =—N"Ant f(anl’LBnH)

measured in terms of the stellar radiB for which the

A. Galerkin model for the mean-field dynamo

magnetic field takes the form NN
° +3 S FnmB.C, ©
- 1 9A, m=11=1
B:<°’B¢’§W)' N
7Bn =—n%B,+ 2, G(n,mA (6)
where A is the ¢ component(latitudina) of the magnetic at "gs ™
vector potential and® is the ¢ component oB. The model
. . . . . . N N
is given by the mean-field induction equation aC, )
=—wn?C,— >, >, H(n,mhA,B,, @)
5B at m=1i=1
8nml

whereB is the mean magnetic field, is the mean velocity,  F(p.m,1)=
7, is the turbulent magnetic diffusitivity, and is the coef- 0 a(ntm+h(n+m=1)(n—=m+1)(n—m—1)"
ficient of thea effect[10]. In addition, thex effect, which is
important in maintaining the dynamo action by relating the
mean electrical current arising in helical turbulence to the 4
mean magnetic field, is assumed to be dynamic and expres$f(n,m,|)= — ,
ible in the form a= ayCcox—ay(t), Whereay is a constant 7 (n+I+m)(n+1-m)(n—=1+m)(n—I-m)
and a, is its dynamic part satisfying the equation

if n+m+1 is odd andF(n,m,l)=0 otherwise,

nml(—n2+3m?+12)

if n+m+1 is odd andH(n,m,l)=0 otherwise and

&aM &ZQ’M

M +0QJ-B, ) 4nm
a e 10 @ G(n,m)zm, (8)
whereQ is a physical c_onsfta_ntj is the electrical current, if n+mis odd and3(n,m)=0 otherwise. In these equations
and v is the turbulent diffusivity. o the control parameters are the so-called dynamo nurbber
These assumptions allow E@) to be split into the fol-  (which is proportional to the square of the angular velocity
lowing two equations: gradient and to the square of the turnover time of the turbu-
) lent convection eddigsand the diffusivity ratiov= v,/ 7;.
- = 52 .2 + C!B¢ y (3) . .
at R 9x B. Invariant subspaces for the model withN =4

Covaset al.[9] confined themselves to the study of mod-

= ——t = ) (4)  els that are antisymmetric with respect to the equator and
gt R% xR X found that the minimum truncation ordiirfor which a simi-

lar asymptotic behavior existed was=4. In this case, the
6équations have a twelve-dimensional phase space and are
symmetric under the four-element Abelian group that com-
prises the identity, the reversal transformation

By M 9°By @ IA,

Expressing these equations in a nondimensional form, rel
beling the new variables to

(A¢,B¢ ,aM)z(A,B,C),

ALt —A,(t B.(t)— —B,(t C(t)—=C(t
and using a spectral expansion of the form (D=~ An(t), Balt) (0, Cal)=Col0),

N the antisymmetri¢or dipolap transformations
A= 2, Ar(sim An() = (= 1)" ALY, Bo(t)—(~1)"By(1),

Ca(t)—(=1)"Cp(1)
B

N
> B, (t)simnx, q - ,
=4 and the symmetri¢or quadrupolartransformations

An()—=(=1)"An(1), Bn()—(=1)""1By(t),

N
C= 2, Cov)simnx, Ca(t)—(—1)"Cp(b).
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The trivial solution, given byA,=B,=C,=0, is the only
one that possesses both the dipolar and quadrupolar symm 170 175 180 185
tries while symmetric solutions come in pairs and asymmet: J T
ric solutions come in quadruples. L5 CA

The antisymmetric part of these equations, which is ob-
tained by puttingB,;=C,;=A,=B3;=C3=A,=0, was stud- —pa
ied in[11]. We refer to this dynamically invariant subspace

10 ¢ 7

Ma={(A1,0,0,0B>,C>,A3,0,0,0B4,C4)} 4

as the antisymmetric subspace. There is also a six FP
dimensional symmetric invariant subspace 05

//PA
L AN, ]

although as we will see, the attractors are typically not con- 0.0 | <2 T PA
tained withinM 5. Throughout the paper we refer to the full - L .
system as the twelve-dimensional system. 0 50 100 150 200 250 300

Dynamo number D

M s= {(O-B1,O,A2,0,CZ,O,B3,O,A4yO,C4)}

Ill. DYNAMICAL BEHAVIOR

. . ) FIG. 1. Diagram showing attractors for a random selection of
The system considered here has a two-dimensional p&sitial conditions withinM  for v=0.5. TFP stands for trivial fixed

rameter spacel{,v), neither of which is normal for the sys- ,oint, FP for nontrivial fixed point, PA for antisymmetric periodic
tem restricted tdV 4, as can be seen from Ed$)—(7). We  orpit, and CA for antisymmetric chaotic orbit. Continuation using
confine v to the rangg0,1] on physical grounds, as other- DSTOOL shows that the break in the FP attractor uppermost in this
wise there will be no dynamo action. Previous studies ofdiagram is just a feature of the choice of initial conditions; in fact it
these models have taker=0.5. Here we shall consider two continues to be attracting over the whole rangeDof The inset
distinct cases of given by 0.5 and 0.47 in this range and in shows coexisting chaotic and periodic attractors over a range of
each case allowD to vary. To study the dynamics of this o _ .

system, we start by |00king at the dynamics on the antisymEVO'VeS on a branch of stable perlodlc solution with quadru—

metric invariant submanifold , and then look at how this Polar symmetry that becomes unstable through a torus bifur-
Changes as the full system is switched on. cation atD=118.76. In addition to this, d0=118.23, the

origin undergoes Hopf bifurcation creating a branch of dipo-
lar periodic solutions that are stabilized by a torus bifurcation
atD=127.78, as shown in the inset of Fig. 2. Also shown in
To begin with, we consider the case #=0.5 and as a the inset is the appearance through a saddle-node bifurcation
first step make a coarse study of the dynamics confined to
M, as well as the full12-dimensionalsystem by consider-

ing the averaged energ)Eécfg|I§|2dx) as a function of the
parameteD. The results of these calculations are summa- ;5 | P

A
rized in Figs. 1 and 2, respectively. The figures were pro- ps \
~/ VA /
< PM|
QP

A. Basic bifurcation behavior

duced using a fourth order variable step size Runge-Kutte
method to integrate a number of randomly selected initial
conditions forward in time, and so get a selection of the 19}
possible attractors. After a time when transients were ,
deemed to have decayédhich we took to be 1000 time ¥
units) we averaged the energy over a much longer time serie:

i.e., 10 000 time units. We have verified the following results 0.5
using the continuation packag@T0o97 [12].

For smallD (D<98.67) all attracting dynamics of the §:
full twelve-dimensional system is confined to the six- L™
dimensional antisymmetric invariant submanifditl, . The 0.0
details of bifurcations are depicted in Figs. 1 and 2. As can : . .
be seen from these figures, Rss increased, the fixed point 0 50 100 150 200 250 300
at the origin(the trivial solution for both systemsifurcates Dynamo number D
at D=12.57 to two fixed points, which are symmetric with

respect t0A,——A,, B,——B,, C,—C,. A subcritical FIG. 2. Diagram showing attractors for randomly chosen initial
pitchfork-type  bifurcation  stabilizes the origin from congitions in the full phase space for=0.5. PS stands for sym-
D =77.25 up to a supercritical Hopf bifurcation@t=98.67.  metric periodic orbiti.e., inMg), PM for a periodic orbit neither in

For larger values ob the two systems will evolve differ- M, nor in Mg, and QPA for antisymmetric quasiperiodic orbit. The
ently. In M, the supercritical Hopf bifurcation creates a notations of TFP, FP, and PA are as in Fig. 1. Observe the existence
stable periodic solution while the twelve-dimensional systenof intermittent behavior over a range bf.

3

A

Transient Type I -
intermittency
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171.0 173.0 175.0 1770 179.0 181.0

04 .
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Dynamo number D

FIG. 3. The leadingdi.e., most positivetransverse Lyapunov exponent and the two leading Lyapunov exponents for the attractor of a
particular initial condition for the system dvl, at v=0.5. The attractor is a periodic orbit froB=170.25 up toD=178.76, although it
undergoes a number of period doublings in this range to give a chaotic attracefd78.76. The computed orbit is transversely stable
in the range 171.19D<178.71. By reducing to 0.47 we can change order of the loss of transverse stability and the breakdown to chaos
inMa.

of a branch of periodic solutions MgatD=132.72 that are 1. The case ofv=0.5

stable up toD=135.42. Here they lose stability at a torus  pqr the case/=0.5 we examined the behavior of the full
bifurcati-on. All of these branches of sqlutions pass throughéystem over a parameter interval in the neighborhood of
the region fromD=150 to D=175 without bifurcation; p—171 The loss of stability of the periodic orbit described
however, they do not provide a complete picture of all thatiy the previous section does not induce on-off intermittency
happens in this region. o as we first suspected. Instead, the bifurcatioh &t171.10 is
Thereis a pair of pgrlod|c orbits il , that are create_q at o pitchfork bifurcation that creates an asymmetric periodic
a saddl_e-node b|_furcat|_on A= 17(_)'2_5' The_se are stabilized orbit that survives up t® =171.003 and is then destroyed
by a_pltchfork bifurcation of pgrlqdm o_rblts_ d=171.10 by a collision with an unstable orbit in a saddle node bifur-
creating a branch of stable periodic orbits with no symmetryCaltion which is shown in Fig. 4
continuing down tdD =171.003; these are important for the For’D<171 003. we have étrénsientt e-l intermittenc
intermittent dynamics discussed in the next subsedftag. b T ’F' 5 We al | )Ilp d th i Y ¢
4). For largerD, the periodic orbit undergoes a sequence o S can be seen In Fig. >. We aiso caicu ated the scalings o
bifurcations preserving the dipolar symmetiye., creating the transient times and average times between the biaists

branches that remain withi 5) up untilD=177.75 where a shown in Fig._ E arl]ndkFig.)7a1n/c21 four|1_d th(_arr;]w tck)) bhe ir_1 g%od
branch of stable periodic orbits that bifurcate frdvh, is agreement with the knowrr scaling. The benhavior be-

created. We conjecture that the saddle node bifurcation Cré\_/vt()e_eré_bursts Shot;/vn in Fig. 5, hreser:nbles }hedlsz ?]eriodic
ating this series of periodic orbits is associated with breakO'PIt discussed above, except that the amplitude of the sym-

down of a quasiperiodic flow on a two-torus created at one ofnetric part of the oscillations between the bursts grows
the torus bifurcations but have not been able to check this.SIOWIy t_owar_ds the bursts_ and returr_13, a“?f the bursts_, cI(_)se
to the invariant submanifold. The intermittent behavior is

transient, in the sense that the orbit returns to the fixed point
in the invariant submanifold. The spectrum of Lyapunov ex-
We investigated two caseg= 0.5 andv=0.47. Note that ponents for these transient forms of intermittency is in the
for physically meaningful results we require<0.5. We  form (+,0,—,...), until the transient dies out, becoming at-
have examined the transverse stability of attractofd jnby  tracted to a stable fixed poirihote that there are two such
calculating the corresponding transverse Lyapunov exponefiitxed points, located symmetrically with respect to thand
(N7). Figure 3 summarizes the results of calculations of theB variables.
N\ for the periodic orbit which is created &=170.25, as On the negative side of the crossing of the transverse
shown in the inset in Fig. 1. The important feature in thisLyapunov exponent, shown in Fig. 3, we observe a basin
behavior ofAt is the presence of the two crossings throughboundary for the full twelve-dimensional system with a di-
zero. The transverse stability of the other attractors does nabension close to that of the phase space. This is shown in
change in this range db. Fig. 8, which demonstrates which asymptotic attractor on the

B. Intermittent dynamics
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T T T T 10 . . .
D.=171.00328
o0} T 3 [
........ 7~ID-D ™
/’/‘ + data
. i (ST B . .
0.15 Saddle—node bifurcation inducing g 10 = -1/2 scaling
A «— intermittency =
g =
v 8
0.10 . E
[
Pitchfork bifurcation §°
from antisymmetric g
0.05 branch stable for D>171.10 <10 F 4
0.00 AR A I 1 L
17095 171.00 171.05 171.10 171.15 17120 171.25
Dynamo number D
10" = 3 L -2
10 10 10 10
FIG. 4. Continuation of a periodic orbit showing breakdown to . ID-D,|

type | intermittency atv=0.5. The abscissa shows a symmetric

component of a branch of PM periodic orbits created at a pitchfork FIG. 6. Scaling of transient time of the transient type | intermit-
of a PA periodic orbit. This is destroyed at a saddle-node bifurcatency for »=0.5 against the unfolding parame®r-D, .
tion giving rise to type | intermittency db<170.003. ¢

points or one of the cycles, as opposed to initial conditions
invariant submanifold the initial conditions get attracted to.starting in the invariant submanifold.
Both basins seem to be made up of open &aipported by

the fact that calculations indicate an integer box counting 2. The case ofv=0.47
dimension. This conclusion is further supported by the cal- By making v slightly smaller than 0.5 we were able to
culation of the exterior dimensidri3] shown in Fig. 9. change the order of the bifurcation to chaos in the invariant

It is also interesting to note, from both physical and math-submanifold relative to the loss of transverse stability. To
ematical points of view, that even if the fulltwelve- study the behavior of the system witt+ 0.47, we looked at
dimensiongl system does have new attractors, neverthelesthe parameter region in which the system wits 0.5 had a
it will in general alter the relative size of the basins of attrac-chaotic attractofas depicted in Fig.)3 For our calculations,
tion; most initial points seem to get attracted to only the fixedwe chose our initial conditions to lie in the basin of the

chaotic attractors fow=0.5 system. We then studied the
evolution of the system for=0.47 by changing the control
40 T r . r parameter and taking the initial conditions at each step to lie

20
”H ‘

LR A G O A M)l‘ 10" r ' 7 T
0 L ; D,=171.00328
A O 06l O O OO :Uh‘

i 1~1D-D, "
-20

Antisymmetric mode

- data
—— —1/2 scaling

20 0 200 400 600 800 1000

Average burst time T,

Symmetric mode
(=]

0 500 1000 1500 2000 2500

Time

10* L L .

FIG. 5. Time series showing a component transverdd tdfor 10 10
transient type | intermittency series for=0.5 atD=170. Observe ID-D{
the long but irregular periods of lingering near a small amplitude
periodic orbit interspersed by large fluctuations. After a long time, FIG. 7. Scaling of transient burst time of the transient type |
the trajectory is asymptotic to a stable fixed point. intermittency forv=_0.5.

-2

10
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FIG. 8. Two-dimensional slice through phase space obtained by
setting all components to zero except for andB, . The basins of

attraction of the fixed pointblack) and the periodic orbitwhite)

that are coexisting attractors Bt=171.12 andv=0.5.

The results of these calculations for the and the largest
Lyapunov exponents of the full twelve-dimensional system

Dynamo number D

FIG. 10. Largest transverse Lyapunov exponet)(and the

two leading Lyapunov exponents, andX,) for a family of attrac-

tors on the antisymmetric invariant submanifold for 0.47. Note
that the existence of periodic windows and the general trend;of

in the basin of the attractor for the previous parameter valughrough zero indicate a blowout bifurcation ndar=177.75. The

are given in Figs. 10 and Fig. 11. As can be seen, the chaotic ) o ) ) ) )
behavior is now interspersed with periodic windows. Within fiddled basins. The periodic orbit on the invariant submani-

these windows the periodic solutions coexist with chaotic’0!d becomes chaotic just aftér=178.76, not close enough
to the transverse stability bifurcation@t=177.71 to induce

repellers.

Another crossing of the transverse Lyapunov exponentg
from negative to positive, shown in Fig. 3, occurs at
D=178.71, and for 177.X0D <178.71 there are stable pe-
riodic orbits restricted to the invariant submanifold. This
crossing is also related to a bifurcation of periodic orbits an(JSJ
therefore there is no indication of on-off intermittency or

lack of smoothness of these curves is indicative of the factRhiat
not a normal parameter.

n-off intermittency. This suggests that there is likely to be a
lowout at nearby parameters in the two parameter space, as
we discuss in the next section. To substantiate this, we cal-
culated the scaling of the probability distribution of the off
hasegcorresponding to when the distance to the invariant
ubmanifold is less than 16) as a function of their length.

0.20 T T T T
~0.50 T T T T o010 F i
Least squares fit (slope=0.091, error=0.002)
o 000
D,=2-0.091=1.909 FA S
< om0} .
-0.60 | E
-0.20 | .
v, -0.70 t .
> 001 E
=
<& 000 )
| - ek
-001 | E
—002 L A A A
177.695 177.697 177.699 177701 177.703  177.705
~0.90 A A : .

FIG. 9. Approximation of the exterior dimensi@n, of the basin

Dynamo number D

FIG. 11. Amplification of the transverse Lyapunov exponent

and the two leading Lyapunov exponents for the antisymmetric sub-

shown in black in Fig. 8. This is very close to the dimension of theset of equations for=0.47. This shows the existence of a “win-
slice through phase space indicating that the basin boundary dow” in parameter space where the attractor within the invariant
highly convoluted, even though it is not riddled. subspace is periodic and transversely repelling.
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—— =3/2 scaling
5 M A * average density over different runs
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i
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Dynamo number D

FIG. 13. Average of the variabR, measuring average distance
FIG. 12. Scaling of the laminar phases over an on-off transienfrom M , over an on-off transient orbit segment that eventually ends
orbit segment forr=0.47 andD=177.70. The—3/2 scaling is at a fixed point(for »=0.47). The discontinuous nature of this
evidence of an on-off intermittent state. presumably reflects the discontinuous change\ nillustrated in
Fig. 10.
As can be seen in Fig. 12, the scaling agrees with the power-

law behavior proposed if2] with an index of—3/2. Atthis  simple. Firstly, the value ok can be bracketed between
parameter value transient on-off trajectories appear to be inipper and lower bounds that also pass through zero. This is
duced by a chaotic invariant set that is a repeller within thegresumably due to the fact that certain periodic orbits in the

invariant submanifold. attractor will typically maximize and minimize transverse
Lyapunov exponent§l5]. Secondly, there is evidence that
C. Generic behavior for non-normal parameters there is a positive measure Cantor §ein parameter space

. ] ) where chaotic behavior exists. Grthe Lyapunov exponents
There are a number of interesting dynamical phenomengre continuous in the sense that there is a continuous func-
that occur here that are related to the fact that the systeffion N’ of parameter that is equal to; on S and passes

parameters are not normal. S . through zero at aboud=177.75(see Fig. 10 and also Fig.
(I) The chaotic behavior in the invariant submanifold ap-

pears to be of the nonuniformly hyperbolic variety, and in
particular the chaotic attractors are not structurally stable 4.0 T
they are destroyed by arbitrarily small perturbations. Not-
withstanding this, we find numerical eviden@€gs. 10 and
11) that there is a family of chaotic attractors with similar
properties defined on subsetof parameter space with posi-
tive (Lebesgugmeasure but opefeven densecomplement.
This is what is found, for example, in the logistic mipf].
In the open dense complement we expect to see periodi
windows and many bifurcations, for example, period dou-
bling cascades, which we have found numerically. This is
consistent with the conjecture of Barretbal.[16] on noting
that the attractors here have only one positive Lyapunov ex
ponent. In this parameter region the system may be said to k
fragile [17], in the sense that arbitrarily small changes in the
control parameteD can force a chaotic attractor to be re-
placed by a nearly attracting periodic orbit. :
(1) In the light of (1), there is no reason why there should -02
be a unigque parameter valide, at which blowout occurs. In
particular, the attractor iM 5 varies discontinuously, and its
tangential and normal Lyapunov exponents vary discontinu- G, 14. Time series showing transient on-off intermittency for
ously with D except within the periodic windows. This ex- ,=0.47 andD=177.70. The on-off intermittent behavior is in-
plains the presence of smooth segments in the curves of Figuced by a chaotic repeller that is present within the periodic win-
11 within regions where the attracting dynamics is periodicdows. After a long transient, the trajectory is asymptotic to a stable
(111 In this system the passageof through zero is fairly  fixed point withinM 4 (not shown.

Antisymmetric mode

Symmetric mode

0 2000 4000 6000 8000 10000

Time t
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13). Even for parameter values notdhwe can get transient but open(even densecomplement. On the basis of our nu-
on-off intermittent behaviofsee Fig. 14 merical calculations these attractors seem to be structurally
On the basis of our results we conjecture that propertiesinstable, which is consistent with the conjecture of Barreto
(1) and (Il) are typical behavior at blowout on varying a et al. [16]. We also find that as a consequence of the non-
non-normal parameter ar@l) is a typical simple scenario normality of the control parameters the blowout bifurcation
of how this can occur. seems to occur over an interval rather than a point in the
For the casev=0.47 we note that the transverse parameter space.
Lyapunov exponentof the chaotic invariant set that attracts ~ These results can be of potential significance for the dy-
within M) becomes positive and causes the appearance ofamical behavior of systems with non-normal parameters.

transient on-off intermittency. Given the fact that the model considered here was derived
directly from dynamo equations, the forms of intermittency
IV. DISCUSSION found here can also be of potential importance in understand-

) ] ) ) ing the mechanism of production of the so-called grand or
~ We have studied global dynamics and bifurcations occurpmaunder-type minima in solar and stellar activity, during
ring in a twelve-dimensional truncation of a stellar mean-yhjch the amplitudes of stellar cycles are greatly diminished
field dynamo model that possesses two six-dimensional inF18 19|. We do not, however, wish to imply that the forms of

variant  submanifolds ~ corresponding to dipolar andintermittency responsible for such stellar behavior are neces-
quadrupolar symmetries, respectively. An essential feature Qfayily transient.

this model is that its control parameters are non-normal, al-
lowing the dynamics to vary both within the invariant sub-
manifolds as well as in the directions normal to them.

Depending upon the region of the parameter space con-
sidered, we find a diverse set of dynamical modes of behav- E.C. was supported by Grant BD/5708/95-Program
ior, including different forms of intermittency. In addition to PRAXIS XXI, from JNICT-Portugal. P.A. was partially sup-
transient type | intermittency, we find transient on-off inter- ported by a Nuffield “Newly appointed science lecturer”
mittency induced by blowout bifurcations. In the parametergrant. R.T. benefited from PPARC UK Grant No. H09454.
range where we observe the latter behavior, the invarianthis research also benefited from the EC Human Capital and
submanifold possesses a family of chaotic attractors on Wobility (Networks grant “Late type stars: activity, magne-
subset of parameter space with positiebesgugmeasure tism, turbulence” No. ERBCHRXCT940483.

ACKNOWLEDGMENTS

[1] J. Alexander, I. Kan, J. Yorke, and Z. You, Int. J. Bifurcations Sandstede, and X. Wan§UTO97 Continuation and bifurca-

Chaos2, 795(1992. tion software for ordinary differential equatiofavailable via
[2] M. Platt, E. Spiegel, and C. Tresser, Phys. Rev. L#t.279 FTP from directory pub/doedel/auto at ftp.cs.concordja.ca
(1993. (1997.
[3] E. Ott and J. Sommerer, Phys. Lett.188 39 (1994. [13] For a discussion of exterior dimension see Y.-C. Lai and C.
[4] F. Xie and G. Hu, Phys. Rev. &3, 1232(1996. Grebogi, Phys. Rev. B3, 1371(1996 Ref.[3].
[5] J. Milnor, Commun. Math. Phy=9, 177 (1985. [14] M. V. Jakobson, Commun. Math. Phy&l, 39 (1981).

[6] P. ASthn, J. Buescu, and I. Stewart, PhyS Lettl®3 126 [15] B. Hunt and E. ott, PhyS Rev. Lefis, 2254(1996
(1994; P. Ashwin, J. Buescu, and |. Stewart, Nonlineasty [16] E. Barreto, B. Hunt, C. Grebogi, and J. Yorke, Phys. Rev. Lett.

7 :_03\((1|99_6-k d Y.-C. Lai, Ph R Let?.7, 5039 78, 4561(1997.
L ](1'998 cinkaya an ~C. Lai, Phys. Rev. Lett, [17] We note in passing that the tefnagile was used in essentially

the same sense also in R. K. Tavakol and G. F. R. Ellis, Phys.
Lett. A 130 217(1988.
[18] N. O. Weiss, inLectures on Solar and Planetary Dynamos

[10] F. Krause and K.-H. R#ler, Mean Field Magnetohydrodynam- edited by M. R. E. Proctor and A. D. GilbefCambridge Uni-

ics and Dynamo Theor{Pergamon, Oxford, 1980 Vefs't)/ Press, Cambridge, 1994 )
[11] E. Covas and R. Tavakol, Phys. Rev5E, 6641(1997. [19] E. Spiegel, N. Platt, and C. Tresser, Geophys. Astrophys. Fluid
[12] E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Dyn. 73, 146(1993.

[8] S. Schmalz and M. Stix, Astron. Astrophy®45 654 (1991J).
[9] E. Covas, A. Tworkowski, A. Brandenburg, and R. Tavakol,
Astron. Astrophys317, 610 (1996.



