
ingdom

PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Non-normal parameter blowout bifurcation: An example in a truncated
mean-field dynamo model
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~Received 11 June 1997!

We examine global dynamics and bifurcations occurring in a truncated model of a stellar mean-field dy-
namo. This model has symmetry-forced invariant subspaces for the dynamics and we find examples of tran-
sient type I intermittency and blowout bifurcations to transient on-off intermittency, involving laminar phases
in the invariant submanifold. In particular, our model provides examples of blowout bifurcations that occur on
varying a non-normal parameter; that is, the parameter varies the dynamics within the invariant subspace at the
same time as the dynamics normal to it. As a consequence of this we find that the Lyapunov exponents do not
vary smoothly and the blowout bifurcation occurs over a range of parameter values rather than a point in the
parameter space.@S1063-651X~97!00312-7#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

There has recently been a great deal of work on determ
istic dynamical systems possessing invariant submanifo
motivated by symmetric systems, and in particular so
coupled systems. Such systems have been shown to b
pable of producing a range of interesting and robust dyna
cal modes of behavior, such asriddled basins@1# andon-off
intermittency@2#, shown to be related by theblowout bifur-
cation @3#, as well astransient on-off intermittency@4#. We
denote the manifold on which such a system is defined byM
and the corresponding invariant submanifold byMI . An at-
tractor is said to have a riddled basin if every open set in
secting the basin also intersects the basin of another attra
in a set of positive measure; such basins can arise robu
for Milnor attractors@5# contained inMI .

On-off intermittency to a state inMI is characterized by
dynamics that comes arbitrarily close to the state inMI but
that also has intermittent large deviations fromMI . Tran-
sient on-off intermittency is a transient dynamics exhibiti
characteristics of on-off intermittent behavior. Namely, it h
an average distribution of laminar phases that satisfie
power law with exponent23/2 @4#. All these phenomena
arise as different aspects of blowout bifurcations, wher
maximum normal Lyapunov exponent of an attractor inMI
passes through zero and thus causes a loss of stability
date, most mathematical understanding of such system
limited to cases where there are a number of simplify
assumptions:

~H1! The control parameters are assumed to benormal@6#
in the sense that the dynamics of the invariant submanifol
independent of the bifurcation parameter. Such parame
preserve the dynamics on the invariant submanifold, but
low it to vary in the rest of the phase space.
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~H2! The attractor that becomes transversely unstable
the MI and hence causes the blowout bifurcation is usua
assumed to be chaotic.
~Note, however, that Yalcinkaya and Lai@7# find blowout
type bifurcations from quasiperiodic dynamics onT2.!

As many physical systems of interest are unlikely to p
sess normal parameters~a notable exception to this bein
some coupled systems!, we expect that~H1! is not usually
applicable. This is particularly expected to be true in trun
tions of partial differential equations that arise in fluid a
dynamo equations~as well as astrophysical models in ge
eral!. Thus, by studying the behavior of a specific exam
where~H1! does not hold, we hope to throw some light o
the dynamics of general systems of this type.

To this end we examine a system where~H1! does not
hold, i.e., where the control parameter varies the dynam
within the invariant subspace as well as that normal to it. W
see that this has the effect of ‘‘spreading’’ the blowout b
furcation out over an interval of parameter values due to
existence of periodic windows where~H2! does not hold;
however, we conjecture that there is a positive measure
set of parameters on which the blowout resembles the c
for normal parameters.

The model we describe in Sec. II arises as the trunca
of a stellar axisymmetric mean field dynamo model whe
the natural control parameters are not normal. There is
more than one invariant manifold forced by the spatial sy
metries of the system, although this does not appear to a
the behavior in the cases examined, in the sense that
only one of these manifolds, namely the antisymmetric o
which seems to dominate the attracting dynamics.

In Sec. III we discuss numerical results from simulatio
of the model; we discuss the basic bifurcational behavio
the full system and the antisymmetric subspace before
cussing examples of type I intermittency, transient on-
intermittency and non-normal parameter blowout bifurcat
in the model. In Sec. IV the implications of the results a
discussed for more general systems of this type as well as
the dynamo problem.
6451 © 1997 The American Physical Society
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II. MODEL

A. Galerkin model for the mean-field dynamo

The dynamo model considered here is the so-calledaV
mean-field dynamo model, with a dynamica effect, given by
Schmalz and Stix@8# ~see also Covaset al. @9# for details!.
We assume a spherical axisymmetrical configuration w
one spatial dimensionx ~corresponding to the latitude an
measured in terms of the stellar radiusR! for which the
magnetic field takes the form

BW 5S 0,Bf ,
1

R

]Af

]x D ,

where A is the f component~latitudinal! of the magnetic
vector potential andB is thef component ofBW . The model
is given by the mean-field induction equation

]BW

]t
5¹3~vW 3BW 1aBW 2h t¹3BW !, ~1!

whereBW is the mean magnetic field,vW is the mean velocity,
h t is the turbulent magnetic diffusitivity, anda is the coef-
ficient of thea effect @10#. In addition, thea effect, which is
important in maintaining the dynamo action by relating t
mean electrical current arising in helical turbulence to
mean magnetic field, is assumed to be dynamic and expr
ible in the forma5a0cosx2aM(t), wherea0 is a constant
andaM is its dynamic part satisfying the equation

]aM

]t
5n t

]2aM

]x2 1QJW•BW , ~2!

whereQ is a physical constant,JW is the electrical current
andn t is the turbulent diffusivity.

These assumptions allow Eq.~1! to be split into the fol-
lowing two equations:

]Af

]t
5

h t

R2

]2Af

]x2 1aBf , ~3!

]Bf

]t
5

h t

R2

]2Bf

]x2 1
v0

R

]Af

]x
. ~4!

Expressing these equations in a nondimensional form, r
beling the new variables to

~Af ,Bf ,aM !⇒~A,B,C!,

and using a spectral expansion of the form

A5 (
n51

N

An~ t !sinnx,

B5 (
n51

N

Bn~ t !sinnx,

C5 (
n51

N

Cn~ t !sinnx,
h

e
ss-

a-

whereN determines the truncation order, reduces Eqs.~2!–
~4! to a set of ordinary differential equations, the dimensi
of which depends on the truncation orderN. We consider the
full system given in terms of the variablesAn , Bn , Cn ,
n51,...,N in the form

]An

]t
52n2An1

D

2
~Bn211Bn11!

1 (
m51

N

(
l 51

N

F~n,m,l !BmCl , ~5!

]Bn

]t
52n2Bn1 (

m51

N

G~n,m!Am , ~6!

]Cn

]t
52nn2Cn2 (

m51

N

(
l 51

N

H~n,m,l !AmBl , ~7!

where

F~n,m,l !5
8nml

p~n1m1 l !~n1m2 l !~n2m1 l !~n2m2 l !
,

if n1m1 l is odd andF(n,m,l )50 otherwise,

H~n,m,l !5
4

p

nml~2n213m21 l 2!

~n1 l 1m!~n1 l 2m!~n2 l 1m!~n2 l 2m!
,

if n1m1 l is odd andH(n,m,l )50 otherwise and

G~n,m!5
4nm

p~n22m2!
, ~8!

if n1m is odd andG(n,m)50 otherwise. In these equation
the control parameters are the so-called dynamo numbeD
~which is proportional to the square of the angular veloc
gradient and to the square of the turnover time of the tur
lent convection eddies! and the diffusivity ration5n t /h t .

B. Invariant subspaces for the model withN54

Covaset al. @9# confined themselves to the study of mo
els that are antisymmetric with respect to the equator
found that the minimum truncation orderN for which a simi-
lar asymptotic behavior existed wasN54. In this case, the
equations have a twelve-dimensional phase space and
symmetric under the four-element Abelian group that co
prises the identityI , the reversal transformation

An~ t !→2An~ t !, Bn~ t !→2Bn~ t !, Cn~ t !→Cn~ t !,

the antisymmetric~or dipolar! transformations

An~ t !→~21!n11An~ t !, Bn~ t !→~21!nBn~ t !,

Cn~ t !→~21!nCn~ t !

and the symmetric~or quadrupolar! transformations

An~ t !→~21!nAn~ t !, Bn~ t !→~21!n11Bn~ t !,

Cn~ t !→~21!nCn~ t !.
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56 6453NON-NORMAL PARAMETER BLOWOUT BIFURCATION: . . .
The trivial solution, given byAn5Bn5Cn50, is the only
one that possesses both the dipolar and quadrupolar sym
tries while symmetric solutions come in pairs and asymm
ric solutions come in quadruples.

The antisymmetric part of these equations, which is
tained by puttingB15C15A25B35C35A450, was stud-
ied in @11#. We refer to this dynamically invariant subspa

MA5$~A1,0,0,0,B2 ,C2 ,A3,0,0,0,B4 ,C4!%

as the antisymmetric subspace. There is also a
dimensional symmetric invariant subspace

MS5$~0,B1,0,A2,0,C2,0,B3,0,A4,0,C4!%

although as we will see, the attractors are typically not c
tained withinMS . Throughout the paper we refer to the fu
system as the twelve-dimensional system.

III. DYNAMICAL BEHAVIOR

The system considered here has a two-dimensional
rameter space (D,n), neither of which is normal for the sys
tem restricted toMA , as can be seen from Eqs.~5!–~7!. We
confinen to the range@0,1# on physical grounds, as othe
wise there will be no dynamo action. Previous studies
these models have takenn50.5. Here we shall consider tw
distinct cases ofn given by 0.5 and 0.47 in this range and
each case allowD to vary. To study the dynamics of thi
system, we start by looking at the dynamics on the antisy
metric invariant submanifoldMA and then look at how this
changes as the full system is switched on.

A. Basic bifurcation behavior

To begin with, we consider the case ofn50.5 and as a
first step make a coarse study of the dynamics confine
MA as well as the full~12-dimensional! system by consider
ing the averaged energy (E}*0

puBW u2dx) as a function of the
parameterD. The results of these calculations are summ
rized in Figs. 1 and 2, respectively. The figures were p
duced using a fourth order variable step size Runge-K
method to integrate a number of randomly selected ini
conditions forward in time, and so get a selection of t
possible attractors. After a time when transients w
deemed to have decayed~which we took to be 1000 time
units! we averaged the energy over a much longer time se
i.e., 10 000 time units. We have verified the following resu
using the continuation packageAUTO97 @12#.

For small D (D,98.67) all attracting dynamics of th
full twelve-dimensional system is confined to the s
dimensional antisymmetric invariant submanifoldMA . The
details of bifurcations are depicted in Figs. 1 and 2. As c
be seen from these figures, asD is increased, the fixed poin
at the origin~the trivial solution for both systems! bifurcates
at D512.57 to two fixed points, which are symmetric wi
respect toAn→2An , Bn→2Bn , Cn→Cn . A subcritical
pitchfork-type bifurcation stabilizes the origin from
D577.25 up to a supercritical Hopf bifurcation atD598.67.

For larger values ofD the two systems will evolve differ-
ently. In MA the supercritical Hopf bifurcation creates
stable periodic solution while the twelve-dimensional syst
e-
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evolves on a branch of stable periodic solution with quad
polar symmetry that becomes unstable through a torus b
cation atD5118.76. In addition to this, atD5118.23, the
origin undergoes Hopf bifurcation creating a branch of dip
lar periodic solutions that are stabilized by a torus bifurcat
at D5127.78, as shown in the inset of Fig. 2. Also shown
the inset is the appearance through a saddle-node bifurca

FIG. 1. Diagram showing attractors for a random selection
initial conditions withinMA for n50.5. TFP stands for trivial fixed
point, FP for nontrivial fixed point, PA for antisymmetric period
orbit, and CA for antisymmetric chaotic orbit. Continuation usi
DSTOOL shows that the break in the FP attractor uppermost in
diagram is just a feature of the choice of initial conditions; in fac
continues to be attracting over the whole range ofD. The inset
shows coexisting chaotic and periodic attractors over a range oD.

FIG. 2. Diagram showing attractors for randomly chosen init
conditions in the full phase space forn50.5. PS stands for sym
metric periodic orbit~i.e., in MS!, PM for a periodic orbit neither in
MA nor in MS, and QPA for antisymmetric quasiperiodic orbit. Th
notations of TFP, FP, and PA are as in Fig. 1. Observe the exist
of intermittent behavior over a range ofD.
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FIG. 3. The leading~i.e., most positive! transverse Lyapunov exponent and the two leading Lyapunov exponents for the attracto
particular initial condition for the system onMA at n50.5. The attractor is a periodic orbit fromD5170.25 up toD5178.76, although it
undergoes a number of period doublings in this range to give a chaotic attractor forD.178.76. The computed orbit is transversely sta
in the range 171.10,D,178.71. By reducingn to 0.47 we can change order of the loss of transverse stability and the breakdown to
in MA .
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of a branch of periodic solutions inMS at D5132.72 that are
stable up toD5135.42. Here they lose stability at a toru
bifurcation. All of these branches of solutions pass throu
the region fromD5150 to D5175 without bifurcation;
however, they do not provide a complete picture of all th
happens in this region.

There is a pair of periodic orbits inMA that are created a
a saddle-node bifurcation atD5170.25. These are stabilize
by a pitchfork bifurcation of periodic orbits atD5171.10
creating a branch of stable periodic orbits with no symme
continuing down toD5171.003; these are important for th
intermittent dynamics discussed in the next subsection~Fig.
4!. For largerD, the periodic orbit undergoes a sequence
bifurcations preserving the dipolar symmetry~i.e., creating
branches that remain withinMA! up untilD5177.75 where a
branch of stable periodic orbits that bifurcate fromMA is
created. We conjecture that the saddle node bifurcation
ating this series of periodic orbits is associated with bre
down of a quasiperiodic flow on a two-torus created at one
the torus bifurcations but have not been able to check th

B. Intermittent dynamics

We investigated two cases,n50.5 andn50.47. Note that
for physically meaningful results we requiren<0.5. We
have examined the transverse stability of attractors inMA by
calculating the corresponding transverse Lyapunov expo
(lT). Figure 3 summarizes the results of calculations of
lT for the periodic orbit which is created atD5170.25, as
shown in the inset in Fig. 1. The important feature in th
behavior oflT is the presence of the two crossings throu
zero. The transverse stability of the other attractors does
change in this range ofD.
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1. The case ofn50.5

For the casen50.5 we examined the behavior of the fu
system over a parameter interval in the neighborhood
D5171. The loss of stability of the periodic orbit describe
in the previous section does not induce on-off intermitten
as we first suspected. Instead, the bifurcation atD5171.10 is
a pitchfork bifurcation that creates an asymmetric perio
orbit that survives up toD5171.003 and is then destroye
by a collision with an unstable orbit in a saddle node bifu
cation, which is shown in Fig. 4.

For D,171.003, we have a transient type-I intermittenc
as can be seen in Fig. 5. We also calculated the scaling
the transient times and average times between the burst~as
shown in Fig. 6 and Fig. 7! and found them to be in good
agreement with the known21/2 scaling. The behavior be
tween bursts shown in Fig. 5, resembles the 12D perio
orbit discussed above, except that the amplitude of the s
metric part of the oscillations between the bursts gro
slowly towards the bursts and returns, after the bursts, c
to the invariant submanifold. The intermittent behavior
transient, in the sense that the orbit returns to the fixed p
in the invariant submanifold. The spectrum of Lyapunov e
ponents for these transient forms of intermittency is in
form (1,0,2,...), until the transient dies out, becoming a
tracted to a stable fixed point~note that there are two suc
fixed points, located symmetrically with respect to theA and
B variables!.

On the negative side of the crossing of the transve
Lyapunov exponent, shown in Fig. 3, we observe a ba
boundary for the full twelve-dimensional system with a d
mension close to that of the phase space. This is show
Fig. 8, which demonstrates which asymptotic attractor on
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invariant submanifold the initial conditions get attracted t
Both basins seem to be made up of open sets~supported by
the fact that calculations indicate an integer box counti
dimension!. This conclusion is further supported by the ca
culation of the exterior dimension@13# shown in Fig. 9.

It is also interesting to note, from both physical and ma
ematical points of view, that even if the full~twelve-
dimensional! system does have new attractors, neverthel
it will in general alter the relative size of the basins of attra
tion; most initial points seem to get attracted to only the fix

FIG. 4. Continuation of a periodic orbit showing breakdown
type I intermittency atn50.5. The abscissa shows a symmetr
component of a branch of PM periodic orbits created at a pitchf
of a PA periodic orbit. This is destroyed at a saddle-node bifur
tion giving rise to type I intermittency atD,170.003.

FIG. 5. Time series showing a component transverse toMA for
transient type I intermittency series forn50.5 atD5170. Observe
the long but irregular periods of lingering near a small amplitu
periodic orbit interspersed by large fluctuations. After a long tim
the trajectory is asymptotic to a stable fixed point.
.

g

-

ss
-
d

points or one of the cycles, as opposed to initial conditio
starting in the invariant submanifold.

2. The case ofn50.47

By making n slightly smaller than 0.5 we were able to
change the order of the bifurcation to chaos in the invaria
submanifold relative to the loss of transverse stability. T
study the behavior of the system withn50.47, we looked at
the parameter region in which the system withn50.5 had a
chaotic attractor~as depicted in Fig. 3!. For our calculations,
we chose our initial conditions to lie in the basin of th
chaotic attractors forn50.5 system. We then studied the
evolution of the system forn50.47 by changing the control
parameter and taking the initial conditions at each step to

k
-

e
,

FIG. 6. Scaling of transient time of the transient type I intermi
tency forn50.5 against the unfolding parameterD2Dc .

FIG. 7. Scaling of transient burst time of the transient type
intermittency forn50.5.
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in the basin of the attractor for the previous parameter va
The results of these calculations for thelT and the largest
Lyapunov exponents of the full twelve-dimensional syst
are given in Figs. 10 and Fig. 11. As can be seen, the cha
behavior is now interspersed with periodic windows. With
these windows the periodic solutions coexist with chao
repellers.

Another crossing of the transverse Lyapunov expone
from negative to positive, shown in Fig. 3, occurs
D5178.71, and for 177.10,D,178.71 there are stable pe
riodic orbits restricted to the invariant submanifold. Th
crossing is also related to a bifurcation of periodic orbits a
therefore there is no indication of on-off intermittency

FIG. 8. Two-dimensional slice through phase space obtaine
setting all components to zero except forA1 andB1 . The basins of
attraction of the fixed point~black! and the periodic orbit~white!
that are coexisting attractors atD5171.12 andn50.5.

FIG. 9. Approximation of the exterior dimensionDx of the basin
shown in black in Fig. 8. This is very close to the dimension of
slice through phase space indicating that the basin bounda
highly convoluted, even though it is not riddled.
e.

tic

c

t,
t

d

riddled basins. The periodic orbit on the invariant subma
fold becomes chaotic just afterD5178.76, not close enough
to the transverse stability bifurcation atD5177.71 to induce
on-off intermittency. This suggests that there is likely to be
blowout at nearby parameters in the two parameter space
we discuss in the next section. To substantiate this, we c
culated the scaling of the probability distribution of the o
phases~corresponding to when the distance to the invaria
submanifold is less than 1023! as a function of their length.

y

is

FIG. 10. Largest transverse Lyapunov exponent (lT) and the
two leading Lyapunov exponents~l1 andl2! for a family of attrac-
tors on the antisymmetric invariant submanifold forn50.47. Note
that the existence of periodic windows and the general trend oflT

through zero indicate a blowout bifurcation nearD'177.75. The
lack of smoothness of these curves is indicative of the fact thatD is
not a normal parameter.

FIG. 11. Amplification of the transverse Lyapunov expone
and the two leading Lyapunov exponents for the antisymmetric s
set of equations forn50.47. This shows the existence of a ‘‘win
dow’’ in parameter space where the attractor within the invaria
subspace is periodic and transversely repelling.
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As can be seen in Fig. 12, the scaling agrees with the pow
law behavior proposed in@2# with an index of23/2. At this
parameter value transient on-off trajectories appear to be
duced by a chaotic invariant set that is a repeller within t
invariant submanifold.

C. Generic behavior for non-normal parameters

There are a number of interesting dynamical phenome
that occur here that are related to the fact that the syst
parameters are not normal.

~I! The chaotic behavior in the invariant submanifold ap
pears to be of the nonuniformly hyperbolic variety, and
particular the chaotic attractors are not structurally stab
they are destroyed by arbitrarily small perturbations. No
withstanding this, we find numerical evidence~Figs. 10 and
11! that there is a family of chaotic attractors with simila
properties defined on asubsetof parameter space with posi-
tive ~Lebesgue! measure but open~even dense! complement.
This is what is found, for example, in the logistic map@14#.
In the open dense complement we expect to see perio
windows and many bifurcations, for example, period do
bling cascades, which we have found numerically. This
consistent with the conjecture of Barretoet al. @16# on noting
that the attractors here have only one positive Lyapunov e
ponent. In this parameter region the system may be said to
fragile @17#, in the sense that arbitrarily small changes in th
control parameterD can force a chaotic attractor to be re
placed by a nearly attracting periodic orbit.

~II ! In the light of ~I!, there is no reason why there shoul
be a unique parameter valueDc at which blowout occurs. In
particular, the attractor inMA varies discontinuously, and its
tangential and normal Lyapunov exponents vary discontin
ously with D except within the periodic windows. This ex-
plains the presence of smooth segments in the curves of F
11 within regions where the attracting dynamics is period

~III ! In this system the passage oflT through zero is fairly

FIG. 12. Scaling of the laminar phases over an on-off transie
orbit segment forn50.47 andD5177.70. The23/2 scaling is
evidence of an on-off intermittent state.
r-
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simple. Firstly, the value oflT can be bracketed betwee
upper and lower bounds that also pass through zero. Th
presumably due to the fact that certain periodic orbits in
attractor will typically maximize and minimize transvers
Lyapunov exponents@15#. Secondly, there is evidence th
there is a positive measure Cantor setS in parameter space
where chaotic behavior exists. OnS the Lyapunov exponents
are continuous in the sense that there is a continuous f
tion l8 of parameter that is equal tolT on S and passes
through zero at aboutD5177.75~see Fig. 10 and also Fig

FIG. 13. Average of the variableB2 measuring average distanc
from MA over an on-off transient orbit segment that eventually en
at a fixed point~for n50.47!. The discontinuous nature of thi
presumably reflects the discontinuous change inlT illustrated in
Fig. 10.

FIG. 14. Time series showing transient on-off intermittency
n50.47 andD5177.70. The on-off intermittent behavior is in
duced by a chaotic repeller that is present within the periodic w
dows. After a long transient, the trajectory is asymptotic to a sta
fixed point withinMA ~not shown!.
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13!. Even for parameter values not inS we can get transien
on-off intermittent behavior~see Fig. 14!.

On the basis of our results we conjecture that proper
~I! and ~II ! are typical behavior at blowout on varying
non-normal parameter and~III ! is a typical simple scenario
of how this can occur.

For the casen50.47 we note that the transvers
Lyapunov exponent~of the chaotic invariant set that attrac
within MA! becomes positive and causes the appearanc
transient on-off intermittency.

IV. DISCUSSION

We have studied global dynamics and bifurcations occ
ring in a twelve-dimensional truncation of a stellar mea
field dynamo model that possesses two six-dimensiona
variant submanifolds corresponding to dipolar a
quadrupolar symmetries, respectively. An essential featur
this model is that its control parameters are non-normal,
lowing the dynamics to vary both within the invariant su
manifolds as well as in the directions normal to them.

Depending upon the region of the parameter space c
sidered, we find a diverse set of dynamical modes of beh
ior, including different forms of intermittency. In addition t
transient type I intermittency, we find transient on-off inte
mittency induced by blowout bifurcations. In the parame
range where we observe the latter behavior, the invar
submanifold possesses a family of chaotic attractors o
subset of parameter space with positive~Lebesgue! measure
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but open~even dense! complement. On the basis of our nu
merical calculations these attractors seem to be structu
unstable, which is consistent with the conjecture of Barr
et al. @16#. We also find that as a consequence of the n
normality of the control parameters the blowout bifurcati
seems to occur over an interval rather than a point in
parameter space.

These results can be of potential significance for the
namical behavior of systems with non-normal paramete
Given the fact that the model considered here was deri
directly from dynamo equations, the forms of intermitten
found here can also be of potential importance in understa
ing the mechanism of production of the so-called grand
Maunder-type minima in solar and stellar activity, durin
which the amplitudes of stellar cycles are greatly diminish
@18,19#. We do not, however, wish to imply that the forms
intermittency responsible for such stellar behavior are nec
sarily transient.
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